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LETTER TO THE EDITOR 

Relaxation of hierarchical models defined on Sierpinski gasket 
fractals 

JosC A Riera 
Instituto de Fisica Rosario, 2000-Rosari0, Argentina 

Received 27 May 1986 

Abstract. In this letter diffusion in the presence of a hierarchical array of barriers is defined 
on the Sierpinski gasket and is generalised to d dimensions. Through an exact renormalisa- 
tion group procedure the anomalous long-time behaviour of the autocorrelation function 
is obtained and compared with that of a similar hierarchical diffusion on Euclidean 
d-dimensional lattices. Some evidence of a transition from anomalous to normal behaviour 
is presented. 

Anomalous relaxation, characteristic of processes with different timescales, occurs in 
very different physical systems ranging from molecular diffusion [ 11 to spin glasses 
[2]. Since the suggestion of Palmer er a1 [3] that this anomalous behaviour may be 
described in the context of hierarchical constrained dynamics, some stochastic models 
have been proposed and analysed [4,5]. The model studied by Huberman and 
Kerszberg [5] consists in the hopping of a particle in a one-dimensional chain with a 
hierarchical array of barriers and is called the I D  ultradiffusion model due to the fact 
that the diffusion has an ultrametric structure (which is also discussed in the other 
model related to spin glasses [4]). 

In a recent paper [6] a transition was found in the dynamics of the I D  ultradiffusion 
model from normal to anomalous diffusion as the parameter R = wit l /w,  is varied, 
where wi ( i  = 0, 1, . . .) is the transition rate associated to the barrier i. More precisely, 
the exponent x for the long-time behaviour of the autocorrelation function Po - t - X  is 

x = x ( R )  O < R < R ,  
x = '  2 R , < R < l  

where X (  R )  is a continuously varying function associated with a line of fixed points 
which extends up to R, = 4. Moreover, it was found that this transition is dependent 
on the distribution of transition rates rather than on the hierarchical spatial arrangement 
of the barriers. However, the self-similar or fractal nature of the barriers in the 
ultradiffusion model is very convenient when a renormalisation group ( RG) approach 
is used. In fact, the I D  model was exactly solved within a RG treatment [7] and the 
anomalous exponent was found to be 

x = In 2/ln[2(2wT + wo)/ wT]. 

This expression is valid for arbitrary values of the transition rate wi. For the particular 
set of parameters w,,, wlr  w,-~= Rw, (rial), following a procedure similar to that 
reported below, it can be shown that expression (2) coincides with that obtained by 
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Teitel and Domany [ 6 ]  (equation (10)) but it is only valid for R less than 4, which is 
the critical value. 

In this letter, the hierarchical structure of the barriers is provided by the fractal 
nature of the Sierpinski gasket ( S G )  and its generalisations to d dimensions. Exact 
solutions can then be worked out with decimation techniques giving results which 
interpolate between those of I D  and higher-dimensional ones. Besides, the study of 
diffusion in SG is interesting in its own right since these fractals are considered as 
non-random models of the backbone of the infinite cluster at the percolation threshold 
[8] and of other phenomena which take place in spaces of non-integer (fractal) 
dimension. 

The diffusion process studied in this letter is defined as follows. Suppose that a 
SG has been constructed by aggregation from triangles in the atomic scale up to infinity 
(figure 1). The basic triangles are considered as cells and the shaded regions as energy 
barriers labelled by i, the stage of the construction in which they appear. As before, 
the probability of a particle crossing the barrier i in the unit of time is denoted by w,. 
Now consider a particle hopping from a cell to a nearest-neighbour one through the 
corresponding barrier. For example, as one can see in figure 2 ( a ) ,  the particle in cell 
A can hop to the cell B through a barrier wo, from B to D through a barrier w,, etc. 
Assigning a site to the centre of each cell one can devise an effective fractal which 
describes the diffusion in a more conventional way (figure 3). The behaviour of the 
autocorrelation function corresponding to normal diffusion in this effective lattice is 
identical with that on the S G .  This result will be explicitly shown later on. 

Let P A ( i ) ,  PB(f), . . . , be the probability of finding the particle at cell A, B, , . . , at 
time t and PA(A), FB(A), . . . , their Laplace transforms. Then the diffusion is described 
by an infinite set of equations of the type (see figure 3)  

A P ~  = w ~ ( F A  - FB) + W O ( F C  - + w l ( F D  - FBI. (3) 

l a )  I bJ 

Figure 1. Construction of the SG by aggregation: ( a )  stage 0, ( b )  stage 1. 

/A\ 

( a )  I b )  

Figure 2. Cells and barriers in ( a )  the original fractal and ( b )  the renormalised one. 
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Figure 3. The effective lattice corresponding to figure 2 ( a ) .  Some values of the transition 
rates are indicated. 

Now we perform a decimation procedure which describes the sites B, C, D, E, G and 
H in terms of A, F and J. The 6 x 6 system can be reduced to a 3 x 3 one by imposing, 
in equation (3), solutions of the form 

F B  = a@* + bFF + cFJ Fc = + CFF + bFJ, 

etc. Then the effective equations obtained for the surviving sites are recast in the form 
(3) with renormalised parameters which are given by the recursion relations 

A ' =  Y(W0, w,)A (4a) 

PI= a ( w o ,  W l ) F  (4b3 

wI=P(wO, wI)wi+l ( i 2  1) (4c)  

(Y =p- l=3y- '  =3w1/(3w0+5w,). (4d 1 
where 

These relations were obtained with the condition w; = wo, which fixes the timescale, 
and for long-time behaviour, i.e. at lowest non-zero order in A. Equation (4c) leads 
to a line of fixed points parametrised by wT varying between 0 and +a. The fixed 
point w:' = w? = 0 ( i  3 2 )  describes the situation of trapping. The fixed point wf = w: = 
+a ( i  2 2 )  corresponds to a model with equal barriers inversely proportional to wo, 
thus leading to ordinary diffusion. Note that in this case, B D, C = E, G = H, etc, in 
figure 3, i.e. the effective fractal again reduces to the SG. By antitransforming (4b) and 
taking into account (4a )  and (4d) one obtains 

x = I n 3 / l n [ ( 3 w o + 5 w ~ ) / w ~ ]  ( 5 )  

with the limiting values x = 0 for wT = 0 and x =In 3/ln 5 for wT = +CO. As expected 
from the above comment, this value of the exponent x is twice the spectral dimension 
of the SG [9]. 

The diffusion studied above can be extended for the generalisations of the SG in 
d dimensions. One must consider each hypertetrahedron as a cell and assign a barrier 
to the regions limited by the cells. These barriers are again labelled as the stage of 
the fractal construction by aggregation. Then, by taking into account the geometrical 
symmetries of the d-dimensional SG,  one can generalise equation (3) and, with a trick 
similar to that used in 2 ~ ,  reduce the system of equations one obtains in place of (4d) 
and (5): 

CY = P - ' = ( d  + 1)y-l = ( d  + l)wI/[(d + l)wo+(d+3)wI] 

x = ln(d + l)/ln{[ ( d  + 1) wo+ (a' + 3) wT]/ wf}. 

(6a) 

(6b) 
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In the limit wy = +CO equation (6b) reduces to 

In(d + 1)  
ln( d + 3) 

X =  (7) 

which is the known exponent for the normal diffusion in a d-dimensional SG [9]. 
To this point no supposition about the values of the transition rates has been made. 

From equations (4c) and (4d)  or (6a) ,  it can be proved that the minimum parameter 
space closed under the RG transformation performed in this work is that defined by 
wo and wl with wi = R'-'w, ( i  3 2).  That is, after a decimation step one recovers the 
same parameter set: w;, wi and wi = R'-'w; ( i 2 2 ) .  Then from (4c) we obtain 

w T =  woR/{ l - [ (d+3) / (d+ l ) ]R}  (8) 

which shows that equation (6b) breaks down at Rd = ( d + l ) / ( d + 3 ) .  One can guess 
(recalling the comment made immediately after equation (2)) that at R, = Rd a transition 
to normal diffusion occurs. 

By replacing (8) in (6b) one can obtain the R dependence of the anomalous 
exponent 

x = ln(d + l)/ln[(d + 1) /R]  (9) 
which is an expression rather different from that advanced in [6] for the ultradiffusion 
in a d-dimensional Euclidean lattice: 

x = d In 2/ln(2/ R ) .  (10) 
Of course, both expressions are identical in d = 1. 

Finally, we calculate the diffusion constant defined by 

Po( t )  = ( Dt)-x.  ( 1 1 )  
By iterating the recursion relations (4a) and (4b) and by taking the Laplace transform 
of ( 1 1 )  one obtains 

From (4d)  this expression reduces to 

D = [r( 1 - x ) ] ' / ~ (  T o T l ) l ' x  

where 

with x and x,, given by (66)  and (7) respectively. The transition rate wo has been set 
as one for simplicity. Through a straightforward procedure, for the set of parameters 
w r ) = l ,  wy)= R, w!")= R'-'w(,") ( i Z 2 ) ,  we obtain 

no = (R  - R, )/ R (15)  
for R > Rd, and zero otherwise. Moreover, 7r1 = 1 (R  > Rd) and T, = 0 (R  < Rd). Then 
one has 

(16) D =  [ r ( l -  x)]'/"( R - R,)/R 
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for R > Rd (normal diffusion) and D = 0 for R < Rd (anomalous diffusion). This result 
gives further support to the supposition that a transition from normal to anomalous 
relaxation occurs at R = Rd = ( d  + 1)/ ( d  + 3). Note that the R dependence of (16) is 
similar to that found by Teitel and Domany [ 6 ]  for the one-dimensional hierarchical 
model. 
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